Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
GM Crops Food ; 15(1): 118-129, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38564429

RESUMO

Soybean is one of the important oil crops and a major source of protein and lipids. Drought can cause severe soybean yields. Dehydrin protein (DHN) is a subfamily of LEA proteins that play an important role in plant responses to abiotic stresses. In this study, the soybean GmDHN9 gene was cloned and induced under a variety of abiotic stresses. Results showed that the GmDHN9 gene response was more pronounced under drought induction. Subcellular localization results indicated that the protein was localized in the cytoplasm. The role of transgenic Arabidopsis plants in drought stress response was further studied. Under drought stress, the germination rate, root length, chlorophyll, proline, relative water content, and antioxidant enzyme content of transgenic Arabidopsis thaliana transgenic genes were higher than those of wild-type plants, and transgenic plants contained less O2-, H2O2 and MDA contents. In short, the GmDHN9 gene can regulate the homeostasis of ROS and enhance the drought resistance of plants.


Assuntos
Arabidopsis , Arabidopsis/genética , Resistência à Seca , Soja/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/genética , Secas , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Theor Appl Genet ; 137(4): 93, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570354

RESUMO

KEY MESSAGE: Using the integrated approach in the present study, we identified eleven significant SNPs, seven stable QTLs and 20 candidate genes associated with branch number in soybean. Branch number is a key yield-related quantitative trait that directly affects the number of pods and seeds per soybean plant. In this study, an integrated approach with a genome-wide association study (GWAS) and haplotype and candidate gene analyses was used to determine the detailed genetic basis of branch number across a diverse set of soybean accessions. The GWAS revealed a total of eleven SNPs significantly associated with branch number across three environments using the five GWAS models. Based on the consistency of the SNP detection in multiple GWAS models and environments, seven genomic regions within the physical distance of ± 202.4 kb were delineated as stable QTLs. Of these QTLs, six QTLs were novel, viz., qBN7, qBN13, qBN16, qBN18, qBN19 and qBN20, whereas the remaining one, viz., qBN12, has been previously reported. Moreover, 11 haplotype blocks, viz., Hap4, Hap7, Hap12, Hap13A, Hap13B, Hap16, Hap17, Hap18, Hap19A, Hap19B and Hap20, were identified on nine different chromosomes. Haplotype allele number across the identified haplotype blocks varies from two to five, and different branch number phenotype is regulated by these alleles ranging from the lowest to highest through intermediate branching. Furthermore, 20 genes were identified underlying the genomic region of ± 202.4 kb of the identified SNPs as putative candidates; and six of them showed significant differential expression patterns among the soybean cultivars possessing contrasting branch number, which might be the potential candidates regulating branch number in soybean. The findings of this study can assist the soybean breeding programs for developing cultivars with desirable branch numbers.


Assuntos
Estudo de Associação Genômica Ampla , Soja , Mapeamento Cromossômico , Haplótipos , Soja/genética , Melhoramento Vegetal , Fenótipo , Sementes/genética , Polimorfismo de Nucleotídeo Único
3.
Plant Cell Rep ; 43(5): 116, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622229

RESUMO

KEY MESSAGE: The study on the GmDWF1-deficient mutant dwf1 showed that GmDWF1 plays a crucial role in determining soybean plant height and yield by influencing the biosynthesis of brassinosteroids. Soybean has not adopted the Green Revolution, such as reduced height for increased planting density, which have proven beneficial for cereal crops. Our research identified the soybean genes GmDWF1a and GmDWF1b, homologous to Arabidopsis AtDWF1, and found that they are widely expressed, especially in leaves, and linked to the cellular transport system, predominantly within the endoplasmic reticulum and intracellular vesicles. These genes are essential for the synthesis of brassinosteroids (BR). Single mutants of GmDWF1a and GmDWF1b, as well as double mutants of both genes generated through CRISPR/Cas9 genome editing, exhibit a dwarf phenotype. The single-gene mutant exhibits moderate dwarfism, while the double mutant shows more pronounced dwarfism. Despite the reduced stature, all types of mutants preserve their node count. Notably, field tests have shown that the single GmDWF1a mutant produced significantly more pods than wild-type plants. Spraying exogenous brassinolide (BL) can compensate for the loss in plant height induced by the decrease in endogenous BRs. Comparing transcriptome analyses of the GmDWF1a mutant and wild-type plants revealed a significant impact on the expression of many genes that influence soybean growth. Identifying the GmDWF1a and GmDWF1b genes could aid in the development of compact, densely planted soybean varieties, potentially boosting productivity.


Assuntos
Arabidopsis , Brassinosteroides , Brassinosteroides/metabolismo , Soja/genética , Sistemas CRISPR-Cas/genética , Mutação/genética , Arabidopsis/metabolismo , Edição de Genes , Regulação da Expressão Gênica de Plantas/genética
4.
BMC Genomics ; 25(1): 327, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565997

RESUMO

Food security is important for the ever-growing global population. Soybean, Glycine max (L.) Merr., is cultivated worldwide providing a key source of food, protein and oil. Hence, it is imperative to maintain or to increase its yield under different conditions including challenges caused by abiotic and biotic stresses. In recent years, the soybean pod-sucking stinkbug Riptortus pedestris has emerged as an important agricultural insect pest in East, South and Southeast Asia. Here, we present a genomics resource for R. pedestris including its genome assembly, messenger RNA (mRNA) and microRNA (miRNA) transcriptomes at different developmental stages and from different organs. As insect hormone biosynthesis genes (genes involved in metamorphosis) and their regulators such as miRNAs are potential targets for pest control, we analyzed the sesquiterpenoid (juvenile) and ecdysteroid (molting) hormone biosynthesis pathway genes including their miRNAs and relevant neuropeptides. Temporal gene expression changes of these insect hormone biosynthesis pathways were observed at different developmental stages. Similarly, a diet-specific response in gene expression was also observed in both head and salivary glands. Furthermore, we observed that microRNAs (bantam, miR-14, miR-316, and miR-263) of R. pedestris fed with different types of soybeans were differentially expressed in the salivary glands indicating a diet-specific response. Interestingly, the opposite arms of miR-281 (-5p and -3p), a miRNA involved in regulating development, were predicted to target Hmgs genes of R. pedestris and soybean, respectively. These observations among others highlight stinkbug's responses as a function of its interaction with soybean. In brief, the results of this study not only present salient findings that could be of potential use in pest management and mitigation but also provide an invaluable resource for R. pedestris as an insect model to facilitate studies on plant-pest interactions.


Assuntos
Heterópteros , Hormônios de Inseto , MicroRNAs , Animais , Soja/genética , Heterópteros/genética , Transcriptoma , MicroRNAs/genética , Perfilação da Expressão Gênica
5.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612522

RESUMO

The multidrug and toxic compound extrusion (MATE) proteins are coding by a secondary transporter gene family, and have been identified to participate in the modulation of organic acid exudation for aluminum (Al) resistance. The soybean variety Glycine max "Tamba" (TBS) exhibits high Al tolerance. The expression patterns of MATE genes in response to Al stress in TBS and their specific functions in the context of Al stress remain elusive. In this study, 124 MATE genes were identified from the soybean genome. The RNA-Seq results revealed significant upregulation of GmMATE13 and GmMATE75 in TBS upon exposure to high-dose Al3+ treatment and both genes demonstrated sequence homology to citrate transporters of other plants. Subcellular localization showed that both proteins were located in the cell membrane. Transgenic complementation experiments of Arabidopsis mutants, atmate, with GmMATE13 or GmMATE75 genes enhanced the Al tolerance of the plant due to citrate secretion. Taken together, this study identified GmMATE13 and GmMATE75 as citrate transporter genes in TBS, which could improve citrate secretion and enhance Al tolerance. Our findings provide genetic resources for the development of plant varieties that are resistant to Al toxicity.


Assuntos
Alumínio , Arabidopsis , Alumínio/toxicidade , Soja/genética , Arabidopsis/genética , Membrana Celular , Citratos
6.
Mol Plant Pathol ; 25(4): e13452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619823

RESUMO

Phytophthora root and stem rot of soybean (Glycine max), caused by the oomycete Phytophthora sojae, is an extremely destructive disease worldwide. In this study, we identified GmEIL1, which encodes an ethylene-insensitive3 (EIN3) transcription factor. GmEIL1 was significantly induced following P. sojae infection of soybean plants. Compared to wild-type soybean plants, transgenic soybean plants overexpressing GmEIL1 showed enhanced resistance to P. sojae and GmEIL1-silenced RNA-interference lines showed more severe symptoms when infected with P. sojae. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the GmERF113 promoter and regulated GmERF113 expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis-related gene GmPR1. The GmEIL1-regulated defence response to P. sojae involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1-GmERF113 module plays an important role in P. sojae resistance via the ethylene signalling pathway.


Assuntos
Fabaceae , Phytophthora , Fatores de Transcrição/genética , Soja/genética , Etilenos , Plantas Geneticamente Modificadas
7.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594617

RESUMO

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Assuntos
Bacillus thuringiensis , Mariposas , Praguicidas , Animais , Larva/genética , Larva/metabolismo , Soja/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Controle Biológico de Vetores/métodos , Mariposas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Cromossomos/metabolismo , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência a Inseticidas/genética
8.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612461

RESUMO

Legume crops establish symbiosis with nitrogen-fixing rhizobia for biological nitrogen fixation (BNF), a process that provides a prominent natural nitrogen source in agroecosystems; and efficient nodulation and nitrogen fixation processes require a large amount of phosphorus (P). Here, a role of GmPAP4, a nodule-localized purple acid phosphatase, in BNF and seed yield was functionally characterized in whole transgenic soybean (Glycine max) plants under a P-limited condition. GmPAP4 was specifically expressed in the infection zones of soybean nodules and its expression was greatly induced in low P stress. Altered expression of GmPAP4 significantly affected soybean nodulation, BNF, and yield under the P-deficient condition. Nodule number, nodule fresh weight, nodule nitrogenase, APase activities, and nodule total P content were significantly increased in GmPAP4 overexpression (OE) lines. Structural characteristics revealed by toluidine blue staining showed that overexpression of GmPAP4 resulted in a larger infection area than wild-type (WT) control. Moreover, the plant biomass and N and P content of shoot and root in GmPAP4 OE lines were also greatly improved, resulting in increased soybean yield in the P-deficient condition. Taken together, our results demonstrated that GmPAP4, a purple acid phosphatase, increased P utilization efficiency in nodules under a P-deficient condition and, subsequently, enhanced symbiotic BNF and seed yield of soybean.


Assuntos
Soja , Fixação de Nitrogênio , Soja/genética , Fixação de Nitrogênio/genética , Simbiose/genética , Sementes/genética , Fósforo , Nitrogênio
9.
BMC Plant Biol ; 24(1): 316, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654195

RESUMO

BACKGROUND: Salt stress significantly reduces soybean yield. To improve salt tolerance in soybean, it is important to mine the genes associated with salt tolerance traits. RESULTS: Salt tolerance traits of 286 soybean accessions were measured four times between 2009 and 2015. The results were associated with 740,754 single nucleotide polymorphisms (SNPs) to identify quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) using three-variance-component multi-locus random-SNP-effect mixed linear model (3VmrMLM). As a result, eight salt tolerance genes (GmCHX1, GsPRX9, Gm5PTase8, GmWRKY, GmCHX20a, GmNHX1, GmSK1, and GmLEA2-1) near 179 significant and 79 suggested QTNs and two salt tolerance genes (GmWRKY49 and GmSK1) near 45 significant and 14 suggested QEIs were associated with salt tolerance index traits in previous studies. Six candidate genes and three gene-by-environment interactions (GEIs) were predicted to be associated with these index traits. Analysis of four salt tolerance related traits under control and salt treatments revealed six genes associated with salt tolerance (GmHDA13, GmPHO1, GmERF5, GmNAC06, GmbZIP132, and GmHsp90s) around 166 QEIs were verified in previous studies. Five candidate GEIs were confirmed to be associated with salt stress by at least one haplotype analysis. The elite molecular modules of seven candidate genes with selection signs were extracted from wild soybean, and these genes could be applied to soybean molecular breeding. Two of these genes, Glyma06g04840 and Glyma07g18150, were confirmed by qRT-PCR and are expected to be key players in responding to salt stress. CONCLUSIONS: Around the QTNs and QEIs identified in this study, 16 known genes, 6 candidate genes, and 8 candidate GEIs were found to be associated with soybean salt tolerance, of which Glyma07g18150 was further confirmed by qRT-PCR.


Assuntos
Interação Gene-Ambiente , Genes de Plantas , Soja , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tolerância ao Sal , Soja/genética , Soja/fisiologia , Tolerância ao Sal/genética , Locos de Características Quantitativas/genética , Fenótipo
10.
Theor Appl Genet ; 137(5): 96, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589730

RESUMO

KEY MESSAGE: A total of 416 InDels and 112 SNPs were significantly associated with soybean photosynthesis-related traits. GmIWS1 and GmCDC48 might be related to chlorophyll fluorescence and gas-exchange parameters, respectively. Photosynthesis is one of the main factors determining crop yield. A better understanding of the genetic architecture for photosynthesis is of great significance for soybean yield improvement. Our previous studies identified 5,410,112 single nucleotide polymorphisms (SNPs) from the resequencing data of 219 natural soybean accessions. Here, we identified 634,106 insertions and deletions (InDels) from these 219 accessions and used these InDel variations to perform principal component and linkage disequilibrium analysis of this population. The genome-wide association study (GWAS) were conducted on six chlorophyll fluorescence parameters (chlorophyll content, light energy absorbed per reaction center, quantum yield for electron transport, probability that a trapped exciton moves an electron into the electron transport chain beyond primary quinone acceptor, maximum quantum yield of photosystem II primary photochemistry in the dark-adapted state, performance index on absorption basis) and four gas-exchange parameters (intercellular carbon dioxide concentration, stomatal conductance, net photosynthesis rate, transpiration rate) and revealed 416 significant InDels and 112 significant SNPs. Based on GWAS results, GmIWS1 (encoding a transcription elongation factor) and GmCDC48 (encoding a cell division cycle protein) with the highest expression in the mapping region were determined as the candidate genes responsible for chlorophyll fluorescence and gas-exchange parameters, respectively. Further identification of favorable haplotypes with higher photosynthesis, seed weight and seed yield were carried out for GmIWS1 and GmCDC48. Overall, this study revealed the natural variations and candidate genes underlying the photosynthesis-related traits based on abundant phenotypic and genetic data, providing valuable insights into the genetic mechanisms controlling photosynthesis and yield in soybean.


Assuntos
Estudo de Associação Genômica Ampla , Soja , Soja/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fotossíntese/genética , Clorofila/metabolismo
11.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1065-1075, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658149

RESUMO

Autophagy plays an essential role in recycling/re-utilizing nutrients and in adaptions to numerous stresses. However, the roles of autophagy in soybean have not been investigated extensively. In this study, a virus-induced gene silencing approach mediated by bean pod mottle virus (BPMV) was used to silence autophagy-related gene 5 (ATG5) genes in soybean (referred to as GmATG5). Our results showed that ATG8 proteins were massively accumulated in the dark-treated leaves of the GmATG5-silenced plants relative to the vector control plants (BPMV-0), indicating that autophagy pathway is impaired in the GmATG5-silenced plants. Consistent with the impaired autophagy, an accelerated senescence phenotype was observed on the leaves of the dark-treated GmATG5-silenced plants, which was not shown on the leaves of the dark-treated BPMV-0 plants. In addition, the accumulation levels of both reactive oxygen species (ROS) and salicylic acid (SA) were significantly induced in the GmATG5-silenced plants compared with that of the vector control plants (BPMV-0), indicating an activated immunity. Accordingly, the GmATG5-silenced plants exhibited significantly enhanced resistance against Pseudomonas syringae pv. glycinea (Psg) in comparison with the BPMV-0 plants. Nevertheless, the activated immunity observed in the GmATG5-silenced plant was independent of the activation of mitogen-activated protein kinase (MAPK).


Assuntos
Autofagia , Comovirus , Resistência à Doença , Inativação Gênica , Soja , Doenças das Plantas , Soja/genética , Soja/microbiologia , Soja/imunologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Autofagia/genética , Comovirus/genética , Senescência Vegetal/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Plantas Geneticamente Modificadas/genética
12.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1050-1064, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658148

RESUMO

Heterotrimeric GTP-binding protein (G-proteins) complex, which consists of Gα, Gß and Gγ subunits, plays critical roles in defense signaling. Arabidopsis genome contains only a single Gß-encoding gene, AGB1. Loss function of AGB1 in Arabidopsis results in enhanced susceptibility to a wide range of pathogens. However, the function of soybean AGB1 in immunity has not been previously interrogated. Bioinformatic analysis indicated that there are four GmAGB1 homologous genes in soybean genome, sharing homology of 86%-97%. To overcome the functional redundancy of these GmAGB1 homologs, virus-induced gene silencing (VIGS) mediated by the bean pod mottle virus (BPMV) was used to silence these four genes simultaneously. As expected, these four GmAGB1 homologous genes were indeed silenced by a single BPMV-VIGS vector carrying a conserved fragments among these four genes. A dwarfed phenotype was observed in GmAGB1s-silenced soybean plants, suggesting that GmAGB1s play a crucial role in growth and development. Disease resistance analysis indicated that silencing GmAGB1s significantly compromised the resistance of soybean plants against Xanthomonas campestris pv. glycinea (Xag). This reduced resistance was correlated with the decreased accumulation of pathogen-induced reactive oxygen species (ROS) and the reduced activation of GmMPK3 in response to flg22, a conserved N-terminal peptide of flagellin protein. These results indicate that GmAGB1 functions as a positive regulator in disease resistance and GmAGB1 is indispensable for the ROS production and GmMPK3 activation induced by pathogen infection. Yeast two hybrid assay showed that GmAGB1 interacted with GmAGG1, suggesting that an evolutionary conserved heterotrimeric G protein complex similarly functions in soybean.


Assuntos
Resistência à Doença , Inativação Gênica , Soja , Doenças das Plantas , Soja/genética , Soja/imunologia , Soja/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Comovirus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Regulação da Expressão Gênica de Plantas , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/imunologia , Xanthomonas , Espécies Reativas de Oxigênio/metabolismo
13.
Arch Insect Biochem Physiol ; 115(3): e22100, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500478

RESUMO

The CRISPR/Cas9 technology has greatly progressed research on non-model organisms, demonstrating successful applications in genome editing for various insects. However, its utilization in the case of the soybean looper, Chrysodeixis includens, a notable pest affecting soybean crops, has not been explored due to constraints such as limited genomic information and the embryonic microinjection technique. This study presents successful outcomes in generating heritable knockout mutants for a pigment transporter gene, scarlet, in C. includens through CRISPR/Cas9-mediated mutagenesis. The scarlet locus identified in the genome assembly of C. includens consists of 14 exons, with a coding sequence extending for 1,986 bp. Two single guide RNAs (sgRNAs) were designed to target the first exon of scarlet. Microinjection of these two sgRNAs along with the Cas9 protein into fresh embryos resulted in the successful production of variable phenotypes, particularly mutant eyes. The observed mutation rate accounted for about 16%. Genotype analysis revealed diverse indel mutations at the target site, presumably originating from double-strand breaks followed by the nonhomologous end joining repair, leading to a premature stop codon due to frame shift. Single-pair mating of the mutant moths produced G1 offspring, and the establishment of a homozygous mutant strain occurred in G2. The mutant moths exhibited lightly greenish or yellowish compound eyes in both sexes, confirming the involvement of scarlet in pigmentation in C. includens. Notably, the CRISPR/Cas9-mediated genome editing technique serves as a visible phenotypic marker, demonstrating its proof-of-concept applicability in C. includens, as other pigment transporter genes have been utilized as visible markers to establish genetic control for various insects. These results provide the first successful case that the CRISPR/Cas9 method effectively induces mutations in C. includes, an economically important soybean insect pest.


Assuntos
Sistemas CRISPR-Cas , Mariposas , Feminino , Masculino , Animais , RNA Guia de Sistemas CRISPR-Cas , Soja/genética , Cor de Olho , Mariposas/genética
14.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542270

RESUMO

Soybean (Glycine max) plants first emerged in China, and they have since been established as an economically important oil crop and a major source of daily protein for individuals throughout the world. Seed emergence height is the first factor that ensures seedling adaptability to field management practices, and it is closely related to epicotyl length. In the present study, the Suinong 14 and ZYD00006 soybean lines were used as parents to construct chromosome segment substitution lines (CSSLs) for quantitative trait loci (QTL) identification. Seven QTLs were identified using two years of epicotyl length measurement data. The insertion region of the ZYD00006 fragment was identified through whole genome resequencing, with candidate gene screening and validation being performed through RNA-Seq and qPCR, and Glyma.08G142400 was ultimately selected as an epicotyl length-related gene. Through combined analyses of phenotypic data from the study population, Glyma.08G142400 expression was found to be elevated in those varieties exhibiting longer epicotyl length. Haplotype data analyses revealed that epicotyl data were consistent with haplotype typing. In summary, the QTLs found to be associated with the epicotyl length identified herein provide a valuable foundation for future molecular marker-assisted breeding efforts aimed at improving soybean emergence height in the field, with the Glyma.08G142400 gene serving as a regulator of epicotyl length, offering new insight into the mechanisms that govern epicotyl development.


Assuntos
Soja , Locos de Características Quantitativas , Humanos , Soja/genética , Mapeamento Cromossômico , Melhoramento Vegetal , Sementes/metabolismo , Mineração de Dados
15.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542484

RESUMO

Soybean phytophthora blight is a severe menace to global agriculture, causing annual losses surpassing USD 1 billion. Present crop loss mitigation strategies primarily rely on chemical pesticides and disease-resistant breeding, frequently surpassed by the pathogens' quick adaptive evolution. In this urgent scenario, our research delves into innovative antimicrobial peptides characterized by low drug resistance and environmental friendliness. Inhibiting chitin synthase gene activity in Phytophthora sojae impairs vital functions such as growth and sporulation, presenting an effective method to reduce its pathogenic impact. In our study, we screened 16 previously tested peptides to evaluate their antimicrobial effects against Phytophthora using structure-guided drug design, which involves molecular docking, saturation mutagenesis, molecular dynamics, and toxicity prediction. The in silico analysis identified AMP_04 with potential inhibitory activity against Phytophthora sojae's chitin synthase. Through three rounds of saturation mutagenesis, we pin-pointed the most effective triple mutant, TP (D10K, G11I, S14L). Molecular dynamic simulations revealed TP's stability in the chitin synthase-TP complex and its transmembrane mechanism, employing an all-atom force field. Our findings demonstrate the efficacy of TP in occupying the substrate-binding pocket and translocation catalytic channel. Effective inhibition of the chitin synthase enzyme can be achieved. Specifically, the triple mutant demonstrates enhanced antimicrobial potency and decreased toxicity relative to the wild-type AMP_04, utilizing a mechanism akin to the barrel-stave model during membrane translocation. Collectively, our study provides a new strategy that could be used as a potent antimicrobial agent in combatting soybean blight, contributing to sustainable agricultural practices.


Assuntos
Anti-Infecciosos , Phytophthora , Soja/genética , Phytophthora/fisiologia , Quitina Sintase/genética , Peptídeos Antimicrobianos , Simulação de Acoplamento Molecular , Resistência à Doença , Melhoramento Vegetal , Doenças das Plantas/prevenção & controle , Doenças das Plantas/genética
16.
Theor Appl Genet ; 137(4): 77, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460027

RESUMO

KEY MESSAGE: We proposed models to predict the effects of genomic and environmental factors on daily soybean growth and applied them to soybean growth data obtained with unmanned aerial vehicles. Advances in high-throughput phenotyping technology have made it possible to obtain time-series plant growth data in field trials, enabling genotype-by-environment interaction (G × E) modeling of plant growth. Although the reaction norm is an effective method for quantitatively evaluating G × E and has been implemented in genomic prediction models, no reaction norm models have been applied to plant growth data. Here, we propose a novel reaction norm model for plant growth using spline and random forest models, in which daily growth is explained by environmental factors one day prior. The proposed model was applied to soybean canopy area and height to evaluate the influence of drought stress levels. Changes in the canopy area and height of 198 cultivars were measured by remote sensing using unmanned aerial vehicles. Multiple drought stress levels were set as treatments, and their time-series soil moisture was measured. The models were evaluated using three cross-validation schemes. Although accuracy of the proposed models did not surpass that of single-trait genomic prediction, the results suggest that our model can capture G × E, especially the latter growth period for the random forest model. Also, significant variations in the G × E of the canopy height during the early growth period were visualized using the spline model. This result indicates the effectiveness of the proposed models on plant growth data and the possibility of revealing G × E in various growth stages in plant breeding by applying statistical or machine learning models to time-series phenotype data.


Assuntos
Secas , Soja , Soja/genética , Melhoramento Vegetal , Genoma , Genômica/métodos
17.
Theor Appl Genet ; 137(4): 85, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502238

RESUMO

KEY MESSAGE: A stable QTL qSW_Gm10 works with a novel locus, qSW_Gm01, in a synergistic manner for controlling slow-wilting traits at the early vegetative stage under drought stress in soybean. Drought is one of the major environmental factors which limits soybean yield. Slow wilting is a promising trait that can enhance drought resilience in soybean without additional production costs. Recently, a Korean soybean cultivar SS2-2 was reported to exhibit slow wilting at the early vegetative stages. To find genetic loci responsible for slow wilting, in this study, quantitative trait loci (QTL) analysis was conducted using a recombinant inbred line (RIL) population derived from crossing between Taekwangkong (fast-wilting) and SS2-2 (slow-wilting). Wilting score and leaf moisture content were evaluated at the early vegetative stages for three years. Using the ICIM-MET module, a novel QTL on Chr01, qSW_Gm01 was identified, together with a previously known QTL, qSW_Gm10. These two QTLs were found to work synergistically for slow wilting of the RILs under the water-restricted condition. Furthermore, the SNP markers from the SoySNP50K dataset, located within these QTLs, were associated with the wilting phenotype in 30 diverse soybean accessions. Two genes encoding protein kinase 1b and multidrug resistance-associated protein 4 were proposed as candidate genes for qSW_Gm01 and qSW_Gm10, respectively, based on a comprehensive examination of sequence variation and gene expression differences in the parental lines under drought conditions. These genes may play a role in slow wilting by optimally regulating stomatal aperture. Our findings provide promising genetic resources for improving drought resilience in soybean and give valuable insights into the genetic mechanisms governing slow wilting.


Assuntos
Soja , Locos de Características Quantitativas , Mapeamento Cromossômico , Soja/genética , Fenótipo , Secas
18.
Theor Appl Genet ; 137(4): 89, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536528

RESUMO

KEY MESSAGE: The genetic architecture of symbiotic N fixation and related traits was investigated in the field. QTLs were identified for percent N derived from the atmosphere, shoot [N] and C to N ratio. Soybean [Glycine max (L.) Merr.] is cultivated worldwide and is the most abundant source of plant-based protein. Symbiotic N2 fixation (SNF) in legumes such as soybean is of great importance; however, yields may still be limited by N in both high yielding and stressful environments. To better understand the genetic architecture of SNF and facilitate the development of high yielding cultivars and sustainable soybean production in stressful environments, a recombinant inbred line population consisting of 190 lines, developed from a cross between PI 442012A and PI 404199, was evaluated for N derived from the atmosphere (Ndfa), N concentration ([N]), and C to N ratio (C/N) in three environments. Significant genotype, environment and genotype × environment effects were observed for all three traits. A linkage map was constructed containing 3309 single nucleotide polymorphism (SNP) markers. QTL analysis was performed for additive effects of QTLs, QTL × environment interactions, and QTL × QTL interactions. Ten unique additive QTLs were identified across all traits and environments. Of these, two QTLs were detected for Ndfa and eight for C/N. Of the eight QTLs for C/N, four were also detected for [N]. Using QTL × environment analysis, six QTLs were detected, of which five were also identified in the additive QTL analysis. The QTL × QTL analysis identified four unique epistatic interactions. The results of this study may be used for genomic selection and introgression of favorable alleles for increased SNF, [N], and C/N via marker-assisted selection.


Assuntos
Soja , Fixação de Nitrogênio , Soja/genética , Fixação de Nitrogênio/genética , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Fenótipo
19.
Mol Phylogenet Evol ; 195: 108055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485106

RESUMO

Comparative phylogeographic studies of closely related species sharing co-distribution areas can elucidate the role of shared historical factors and environmental changes in shaping their phylogeographic pattern. The bean bugs, Riptortus pedestris and Riptortus linearis, which both inhabit subtropical regions in East Asia, are recognized as highly destructive soybean pests. Many previous studies have investigated the biological characteristics, pheromones, chemicals and control mechanisms of these two pests, but few studies have explored their phylogeographic patterns and underlying factors. In this study, we generated a double-digest restriction site-associated DNA sequencing (ddRAD-seq) dataset to investigate phylogeographic patterns and construct ecological niche models (ENM) for both Riptortus species. Our findings revealed similar niche occupancies and population genetic structures between the two species, with each comprising two phylogeographic lineages (i.e., the mainland China and the Indochina Peninsula clades) that diverged approximately 0.1 and 0.3 million years ago, respectively. This divergence likely resulted from the combined effects of temperatures variation and geographical barriers in the mountainous regions of Southwest China. Further demographic history and ENM analyses suggested that both pests underwent rapid expansion prior to the Last Glacial Maximum (LGM). Furthermore, ENM predicts a northward shift of both pests into new soybean-producing regions due to global warming. Our study indicated that co-distribution soybean pests with overlapping ecological niches and similar life histories in subtropical regions of East Asia exhibit congruent phylogeographic and demographic patterns in response to shared historical biogeographic drivers.


Assuntos
Soja , Heterópteros , Animais , Soja/genética , Filogenia , Variação Genética , Evolução Molecular , DNA Mitocondrial/genética , Filogeografia , Ásia Oriental , Heterópteros/genética
20.
Plant Physiol Biochem ; 209: 108545, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537381

RESUMO

Water shortage is one of the most important environmental factors limiting crop yield. In this study, we used wild soybean (Glycine soja Sieb. et Zucc.) and soybean (Glycinemax (L.) Merr.) seedlings as experimental materials, simulated drought stress using soil gravimetry, measured growth and physiological parameters, and analyzed differentially expressed genes and metabolites in the leaves of seedling by integrated transcriptomics and metabolomics techniques. The results indicate that under water deficit, Glycine soja maintained stable photosynthate by accumulating Mg2+, Fe3+, Mn2+, Zn2+ and B3+, and improved water absorption by increasing root growth. Notably, Glycine soja enhanced linoleic acid metabolism and plasma membrane intrinsic protein (PIP1) gene expression to maintain membrane fluidity, and increased pentose, glucuronate and galactose metabolism and thaumatin protein genes expression to remodel the cell wall, thereby increasing water-absorption to better tolerate to drought stress. In addition, it was found that secondary phenolic metabolism, such as phenylpropane biosynthesis, flavonoid biosynthesis and ascobate and aldarate metabolism were weakened, resulting in the collapse of the antioxidant system, which was the main reason for the sensitivity of Glycine max to drought stress. These results provide new insights into plant adaptation to water deficit and offer a theoretical basis for breeding soybean varieties with drought tolerance.


Assuntos
Fabaceae , Soja , Soja/genética , Secas , Fluidez de Membrana , Melhoramento Vegetal , Plântula , Água , Glicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...